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Abstract. This paper discusses how data from multiple tactile sensors may be used
to identify and locate one object, from among a set of known objects. We use only
local information from sensors: (1) the position of contact points, and (2) ranges of
surface normals at the contact points. The recognition and localization process is
structured as the development and pruning of a tree of consistent hypotheses about
pairings between contact points and object surfaces. In this paper, we deal with
polyhedral objects constrained to lie on a known plane, i.e., having three degrees
of positioning freedom relative to the sensors.
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1. Tactile Sensing

Tactile information is useful for locating and identifying objects, determining the
texture, hardness, and temperature of objects, arid detecting slippage of a grasped
object. These capabilities are particularly important when visual ifrtion is
not readily available as is the case, for example, in underwater manipulation and
during the process of grasping an object from a bin of parts. A large number of
tactile sensing applications are discussed in a recent survey of the state of the art
in tactile sensing research [Harmon 1982].

* . In this paper we will consider a limited subset of robotic tactile recognition. In
* . particular, we consider how information from several tactile sensors may be used

to identify which object, from among a set of known objects, has been grasped
and to determine the object's position and orientation relative to the hand. In the
recognition process we limit ourselves to using very local information from sensors:
(1) the position of a few contact points, and (2) ranges of surface normals at the
contact points.

We propose a scheme for concurrent recognition and localization that is simple
to implement and has low computational cost. Our primary motivation in this
paper is to illustrate that tactile recognition and localization can be done without
resorting to statistical pattern recognition or global feature- finding. Statistical
pattern recognition, on the one hand, ignores much of the geometric constraint
available from object models and cannot be used to locate objects. Global feature-
finding, on the other hand, may require the sensor to explore large segments of an
object's surface, which is a slow process. A parallel goal is to show that recognition
and localization are feasible using data from small, stiff sensors with poor force
resolution, but high spatial resolution. We feel that the viability of this recognition
approach has important implications on the design of tactile sensors. In particular,
it shows the importance of obtaining some constraint on the surface normal at the
point of contact.

1.1. Tactile Sensors and Tactile Data

A tactile sensor is a device that can detect the location anid, possibly, the
forces of contact with an object. A micro-switch, for example, can serve as a simple
tactile sensor capable of detecting when the force over a small area, e.g., an elevator
button, exceeds some threshold. We make the distinction between tactile sensors,

* which measure forces at specific points, and force sensors, which measure the total
forces and torques on some structure. The simple example in Figure 1 illustrates
this distinction; the two force systems illustrated there would be equivalent to a
force sensor, but distinguishable by an array of tactile sensors.

A The most important type of tactile sensors are the matrix tactile sensors,
composed of an array of sensitive points. The simplest example of a matrix tactile
sensor is an array of micro-switches. Much more sophisticated tactile sensors, with
much higher spatial and force resolution, have been designed; see [Harmon 821 for

. . . . . . .. .
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Figure 1. Tactile sensing versus force sensing.
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a review and [Hillis 82, Overton and Williams 81, Raibert and Tanner 82] for some
recent designs.

A matrix tactile sensor produces an array of measurements that are a function
of the pressure distribution over the sensor. The exact relationship of these
measurements to properties of the object is very complex and depends on the
particular sensor design [Binford 72, Snyder and St. Clair 78, Stojilkovic and Clot
77]. In practice, the presence of electrical noise, vibrations, limited resolution,
and unmodeled compliance make it difficult to determine, much less invert, this
relationship in detail. Because of this difficulty in directly interpreting individual
tactile data elements, especially from today's sensors, existing approaches to tactile
recognition have relied on alternative sources of information (except see [Kinoshita,
Aida, and Mori 75]). The two principal styles are those based on statistical pattern
recognition and those that build explicit models from the data and match them to =

object descriptions.

Much of the existing work on tactile recognition has been based on statistical
pattern recognition or classification. Some researchers have relied on the contact

" patterns on matrix sensors [Briot 79, Okada and Tsuchiya 771. The assumption
motivating this line of research has been that the individual (local) data elements
are not repeatable and only their statistical parameters can be counted on. The
measured statistics are then compared to reference statistics for the known object

* types. The resulting methods are limited to discriminations among a few simple
types of objects.

A second approach to statistical tactile recognition uses patterns of the positions
in which the fingers of articulated hands come to rest against the object. A number
of researcheis have used the joint angles of the fingers as their primary data
[Briot, Renaud, and Stojilkovic 78, Marik 81, Okada and Tsuchiya 77, Stojilkovic
and Saletic 75] grasping the object. A related approach classifies the pattern of
activation of on-off contacts placed on the finger links [Kinoshita, Aida, and Mori
75].

Several tactile recognition methods have been proposed that attempt to build
a partial description of the object from the sense data and to match this description
to the model. Individual approat "es differ on the type of description used.

One group emulates the feature-based approach that has been successful in
vision systems. The idea is that the pattern of measurements on a matrix sensor

2
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* - can be used to identify global object features, such as holes, edges, vertices, pits,
and burrs [Binford 72, Hillis 82, Snyder and St. Clair 781. These features may be
difficult to locate and identify for objects that are significantly larger than the

N sensor, however. In particular, it may be difficult to integrate successive sensor
readings to obtain reliable features.

Another group attempts to build surface models, either from pressure
distributions on matrix sensors [Overton and Williams 81], or from the displacements
of an array of needle-like sensors [Page, Pugh, and Heginbotham 76, Takeda 74].
These methods must face the rather complex problem of matching the surface
descriptions, obtained from the data to those of a model. A related approach that
simplifies matching has been to build a representation of subsets of an object's
cross-section and match them to object models [Ozaki et al 82, Kinoshita, Aida,
Mori 751. The method described in [Ozaki et al 82] is particularly interesting inHI this respect as it represents both objects and data as a sequence of unit surface
tangents indexed by angle. This representation is invariant with translations and
simply shifts with rotation, thus simplifying the matching process.

Note that, in many cases, the tactile sensors are used only to detect contact;
it is the relative position of sensors to objects that is the actual source of data.
The method described in this paper also uses relative positions, rather than
two-dimensional patterns of contacts, as its primary data. The key differences from
the methods outlined above are:

1. Our method uses very sparse data: one point from each sensor.

2. Our method exploits the geometric constraints obtained from complete
object models.

The data we use for recognition and localization are estimates of the position
and normal vector of a few points on the surface of the touched object:

1. Surface point - On the basis of sensor readings, some points on the
sensor can be identified as being in contact with external objects. In real
sensors, there is some uncertainty as to the actual contact point, but its
position can be constrained within some small area. If the sensor's shape
and location in space are known, one can determine the position of some
point on the touched object, to within some uncertainty volume.

2. Surface normal - At the contact points, the known surface normal to the
sensor must be the negative of the object's surface normal at that point.
This is exactly true only for a rigid sensor and object in the absence of
measurement error. In practice, weaker but still useful constraints on the
surface normal can be recovered.

We do not dicuss how this data may be obtained from actual sensor data,
since this process is completely sensor-dependent. Our aim is to show, instead, how

- such data may be used in conjunction with object models to recognize and localize
objects. Different approaches to tactile recognition based on this type of data are
outlined in [Dixon, Salazar, and Slagle 79, Ivancevic 74].

3
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Figure 2. Hand geometry
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Position and normal data can be obtained reliably only if the tactile sensors
have high spatial resolution; such sensors are currently under development. The
sensor described by [Hillis 82], for example, has 256 sensitive points on an area of one
square centimeter. Sensors with even higher resolutions are feasible. Fortunately,
the information required by our recognition method is very local, so the sensor need
not be large. A related requirement on the sensor is that it be fairly stiff; otherwise,
the accuracy of the position and normal information will suffer.

Tactile sensors, by their very nature, provide information over a relatively
small area of an object. This limitation is overcome either by mechanically scanning
the sensor, 'which is slow, or by using multiple sensors. In this paper, we assume
that a small number of sensors, typically three, are used in conjunction. The three
sensors may be, for example, at the tip of three fingers used to grasp an object
[Salisbury 82].

In addition to the data provided by contact, there is an important additional
constraint provided by lack of contact. For example, if the sensors travelled some
distance before contact with an object, any valid interpretation of the sensory data
must not predict an earlier contact along the path. The principle that a lack of data
can provide constraints on interpretation has been exploited in the interpretation of
visual data; see [Grimson 81]. We will see later how this constraint can be exploited
in the tactile domain.

1.2. Problem Definition

The specific problem we consider in this paper is that of identifying an object

from among a set of known objects and of locating it relative to a "hand". We
assume that the hand is equipped with three narrow circular fingers' equipped
with tactile sensors, that can be moved along linear paths. The sensor paths are
parallel to, but possibly at different normal distances from, a pre-specified support
plane (see Figure 2). The hand frame and the positions of the sensors relative to
the hand frame are known to high accuracy. Each sensor is processed to obtain (as

'The effect of sensor shape can be quite complex, and is outside of the scope of this paper. We
have simplified the problem definition by neglecting this effect.

4
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above): (1) one point known to be on the object surface (within some error bound),
and (2) a range of feasible surface normals at the point of contact.

The object touched is assumed to be a single polyhedral object that is on the
support plane in a stable state. Hence the object has three degrees of positional
freedom, x, y, and 0, relative to the frame of the support plane. We call the
vector of parameters that uniquely specify the position and orientation of the
object its configuration. In this case, the vector (X, y, 0) will be the configuration.
The different stable states of the object are treated, conceptually, as if they were
separate objects. This set of assumptions is similar to those used in many binary
vision sytems, e.g., [Gleason and Agin 79].

The key limitation in this problem definition is the one limiting the number
of degrees of positional freedom of the object relative to the hand2 . In bin-picking

problems, for example, the objects may have up to six-degrees of positional freedom
relative to the hand. Note, however, that if one can locate any planar surface on
an object, e.g., by aligning a planar sensor with it or from visual data, then the
resulting localization problem is reduced to three degrees of freedom (relative to
this surface).

2. Basic Algorithm

In this section we illustrate the basic algorithm for the tactile recognition
O problem described above. We first illustrate the approach for three sensors moving

in a plane, therefore objects can be taken as being polygonal. We will assume that
there is no error in determining the position of points on the object's surface. We
consider extensions in the next section.

2.1. Interpretation Tree

After closing an f-fingered hand 1 w- object, we have the positions of f
points, P, known to be on the surfaces of one of the n known objects, 0,, having
ej edges. Our first problem is determining on which of the edges of which object
each of the P is located. From this information, we will be able to compute the
location of the object relative to the hand.

The range of possible pairings of contact points and edges for one object can
be cast in the form of an interpretation tree (IT). The root node of the IT, for
object Oj, has ej descendants, each representing an interpretation in which PI is
on a different edge of 0,. There are a total of f levels in the tree, level i indicating

-. the possible pairings of P with the edges of object O (see Figure 3). Note that
there may be multiple points on a single edge, so that the number of branches is
constant at all levels.

A k-interpretation is any path from the root node to a node at level k in
the IT; it is a list of k pairings of points and edges. An f-interpretation is an
2The extension of the basic approach described here to the general six freedom case is currently

under study [Lozano-Prez and Grimson 831.
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Figure 3. Interpretation Tree
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interpretation of length f, i.e., a path from the root of the IT to one of its leaves.
Clearly, the IT typically contains a very iarge number of possible f-interpretations

In an object with symmetries, of course, the IT is highly redundant. The problem
of detecting symmetries is beyond the scope of this paper. The interested reader is
referred to [Bolles and Cain 82] for a recent treatment of the topic. Once symmetries
are identified, a representative subset of the edges is chosen for the first level of the
IT. Once final solutions are found in this IT, the other symmetric solutions can be

* identified directly. Figure 4 illustrates this.

The n IT's, one for each known object, represent the search space for the tactile
recognition problem discussed here. The basic control structure of the algorithm is
to generate each level of the IT in a breadth first fashion, pruning interpretations
that are inconsistent with input data.

2.2. Pruning

Very few interpretations in an IT are consistent with the input data. In this
paper, we exploit the following constraints to prune infeasible interpretations:

1. Distance Constraint - The distances between each pair of Pi must be a
possible distance between the edges paired with them in an interpretation.

2. Angle Constraint - The range of possible angles between measured
normals at each pair of P5 must include the known angle between surface
normals of the edges paired with them in an interpretation.

6
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Figure 4. The effect of object symmetry on the IT
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Figure 5. Distance Pruning
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3. Model Constraint - The positions of the Pi must satisfy the equations
of the edges paired with them for some position and orientation of the
object.

These constraints typically serve to prune away all except a few non-symmetric
f-interpretations of the data. Other constraints are possible, e.g., that on the
angles in the triangle formed by three contact points.

Note that the distance and angle constraints can be used to prune k-
interpretations, for k > 1, thereby collapsing the IT. We consider each of the
constraints in more detail below.
2.2.1. Distance Pruning
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Figure 6. Angle Pockets
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Given two edges on an object, we can easily compute the range of distances
r 'between points on the edges. If the edges touch at a common vertex, the distances

will range from zero, at the vertex, to the distance between the other two endpoints
of the edges (see Figure 5). Note that we can also compute the range of distances
between points on one edge (zero to length of the edge).

If an interpretation calls for pairing two of the contact points with two object
edges, the distance between the contact points must be within the range of distances
between the edges (see also [Bolles and Cain 82]). In fact, the measured distance is
subject to measurement error, so the actual constraint is that the range of measured
distance plus or minus the estimated error intersects the legal range of distances
between the edges. Note that the distances between all pairs of contact points must
be consistent, i.e., there are three distances between three contact points. Because
of this, the distance constraint typically becomes more effective as more contact
points are considered.

2.2.2. Angle Pruning

Contact points may be associated with a range of legal surface normals obtained
from analyzing the sensory data. Given our restriction on degrees of freedom, the
range of normals can be represented as a range of angles relative to the hand
frame. The range of normal directions can be directly converted to a range of legal
orientations for the touched object. This is not the only source of constraints on
the orientation of the object, however.

We also know that if an interpretation associates a contact point with an
edge, then the path of the sensor to that contact point must not touch any part
of the object before the specified edge. Hence, for each point on an edge, we

"7- 8
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can identify a range of forbidden approach directions which would violate this
constraint 3 . We want to use this constraint to prune impossible interpretations, so
we want a conservative estimate of the forbidden directions; hence, we take the
intersection of the forbidden ranges for all points on the edge. The complement of
this intersection is called the conservative angle pocket for the edge. Given an
actual or hypothesized contact point on an edge, an exact angle pocket can be

* computed. Angle pockets are represented as ranges of angles relative to a reference
frame fixed on the object (see Figure 6).

An additional source of constraint on legal surface normals arises from the
static force balance between the sensor and the surface. For the sensor to come to
rest on the surface, the force applied by the sensor must point into the surface's
friction cone, i.e., the tangential component of the applied force r ;-st. be less
than the maximum frictional force. This constraint can be incorpor. ai into the
computation of an edge's anglci pocket, although it is fairly weak. It nily useful
when no estimate on normal is available from the sensory data.

Given a pairing of a contact point with an object edge we can .te two
ranges of orientations of the object's reference frame relative to the .1i frame.
One range follows from the requirement that the approach direction is within the
angle pocket; the other from the requirement that the actual edge normal direction
be within the range of measured normal directions. Let tk be the orientation of the
approach path relative to the hand frame, [771, ?72] be the angle pocket relative to
the object's frame, 0 be the orientation of the edge normal relative to the object's
frame, and [01,021 be the measured range of surface normal angles relative to the
hand. The range obtained from the approach direction constraint is [0 - 72, 0 -- 71i.
The range obtained from the measured normal constraint is [01- P 02 - sb1. The
intersection of these two ranges represent the range of legal object orientations
relative to the hand (see Figure 6).

Given additional pairings of a contact point and an edge, the resulting range of
object orientations must be consistent with the intersection of ranges of orientations
from previous pairings in the interpretation. A null intersection indicates that the
interpretation may be pruned.

2.2.3. Model Pruning

The two pruning methods described above are approximate in that they rule
out certain interpretations, but cannot completely determine the configuration of
the object. Model pruning proceeds by determining directly what configurations
are consistent with the interpretation. If there are none, the branch can be pruned.

From the sensors, we have the position of the Pi relative to the hand's
coordinate frame. In our geometric model for the object we have equations for the

3Since we are dealing with three-dimensional objects and fingers, this computation must be
44 three-dimensional although the results are two-dimensional. The required computation is to growi

[Losano-Pires and Wesley 79, Lozano-PNrez 81] the object with the finger shape and to take a
cross section of the resulting object. The forbidden directions for points approaching edges of this
polygon are the ones needed. The details are beyond the scope of this paper.
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lines on which edges lie relative to some reference frame fixcd on the object. Our
goal is to id'entify the coordinate transformations from the hand frame to the object
frame such that each of the P, falls within the edge specified by the interpretation.

Let the equation for th It edge line be Fj(P) = 0, where P = (z, y, 1) and
let R(xo, yo, 00) be a homogeneous transformation relating points in the hand frame
to those in the object frame. We must solve for the transformation parameters

* given the equations Fj(R(xo, yo, Oo)Pi) = 0 for each i, J pairing of contact point and
edge in the interpretation. For three edges and three points, these equations can
be solved analytically; in more complex situations, e.g. curved surfaces, numerical
solutions would be required.

In the two -dimensional case with no error, we need three independent equations
to locate an object. When multiple contact points are matched to a single edge

* or parallel edges, only the orientation of the object and not its position may
be determinable. If more than three contact points are available, the remaining
equations may be used for disambiguation or double-checking, when necessary.

Any legal solutions to the system of equations must satisfy two additional
criteria. The first is that the transformed contact points must fall within the finite
edge segments of the model. The existence of a solution for the equations guarantees
only that the points are on the infinite line containing the edge segment. If the
equation system fails to be solvable or if the solution places the points outside the

* edges, the interpretation can be pruned. Another constraint that must be satisfied
is that the approach paths must lie within the exact -ingle pockets of each point
on each edge. Angle pruning, sinct it does not know ,he position of the contact
point on the edge can only use the conservative angle pockets, which -ie a weaker
constraint.

The model pruning test should be a last resort since it requires a 3- interpretation
and it is a computationally expensive test. In our implementation, the model test
was approximately fifty times slower than the distance or angle test. The principal
performance goal of the algorithm is to minimize the number of times that model
pruning must be used.

2.3. Examples

Figure 7 shows a model of a twelve-sided polygon, and three approach paths
terminating at three contact points on the object. Level 1 of the IT has twelve
branches, each representing the possible pairings of P, with one of the edges E,
of the object. All 1 -interpretations are feasible so the algorithm expands the next
level of' the tree, which has 144 2- interpretations.

The 2 -interpretations are eligible for distance and angle pruning. Only 52 of

these interpretations pass the first level of distance pruning and, of these, only 34
* survive angle pruning based only on the approach direction (no measured normals

are used). At this point, the surviving interpretations can then be expanded in
the next level of the tree. Each surviving interpretation has twelve descendants,
so a total of 408 interpretations must be considered. Of these, only 23 pass the

10
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Figure 7. Example with twelve-sided polygon

MODEL

SENSOR PATHS

~ distance test and, of these, only 14 pass the angle test. Of these fourteen remaining
interpretations, only two provide solutions for the transformations between hand
and object.

To summarize, of the 1728 possible interpretations, only 2 are possible. The
distance test was performed on 552 interpretations, the angle test on 65, and the
model test only on 14, i.e. less than 1 percent. In fact, had we had tighter angle
constraints, fewer total interpretations would have been examined. This example
illustrates the surprising effectiveness of the simple pruning mechanisms.

Figure 8 shows several other objects that were handled by an implemented
program that embodies the basic algorithm described above. The number of legal
configurations depends on symmetries and on the choice of contact points. Table I
gives pruning statistics for these objects when distance pruning is used first. Table
II gives the statistics when angle pruning is used first. The statistics are given for
partic-ilar representative choices of approach directions. The results can be better
or wor depending on the actual contact points. If the contact points are clustered

r together, then little pruning can be done. We have found that the best results are
obtained when the approach directions are evenly spaced around the object, which
is intuitively appealing. Figure 9 shows some results of running the algorithm to
differentiate among several objects.

6 The program used on these examples employed only the constraint imposed
by the approach direction, i.e., it does not use measured estimates of the surface
normal. For this reason, angle pruning is significantly less effective as a first pruning

11A
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Figure 8. Other objects tested
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step than distance pruning in these examples. Note that only a small percentage
of the interpretations are examined in detail, but that for complex objects the
absolute numbers are still large. The use of hierarchic object models as discussed
in the next section is intended to address this problem.

In the tables below, the column labels are as follows. Column 1 indicates the
number of nodes in the first level of the IT, which is the number of edges in the

* object (only half the edges of object tr-1 are listed due to symmetry). Column 2 is
the number of nodes in the second level of the IT which is equal to column 1 times
the number of edges in the object. Column 2D is the number of 2- interpretations
surviving distance pruning. Column 2A is the number of such interpretations

12
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Figure 9. Examples showing recognition from among several models
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surviving angle pruning. The order of the columns indicates which type of pruning
is done first. Column 3 indicates the number of possible 3-interpretations. Columns
3D and 3A indicate the number of 3-interpretations that survive distance and angle
pruning respectively. Column M indicates the number of 3-interpretations that pass
the model test.

Table I - Pruning Statistics (Distance First
Object 1 2 2D 2A 3 3D 3A M
tr-1 11 242 71 3 66 11 4 2
tr-2 26 676 190 125 3,250 178 58 2
tr-3 14 196 54 36 504 60 11 2
grip 14 196 42 20 280 80 39 4

gator 49 2,401 363 215 10,535 614 278 1
hand 66 4,356 516 243 16,038 171 118 2

Table II - Prunin Statistics (Angle_ irst)A
Object 1 2 2A 2D 3 3A 3D M
tr-1 11 242 147 3 66 31 4 2
tr-2 26 676 375 125 3,250 1,317 58 2
tr-3 14 196 133 36 504 247 11 2
grip 14 196 84 20 280 120 39 4

gator 49 2P401 1,481 215 10,535 4,711 278 1
hand 66 4,356 1,994 243 16,038 6,270 118 2

In Table III below, we recast the statistics above into pruning efficiencies, i.e.,
the ratio of the number of interpretations that are eliminated by one or more
pruning tests to the number of initial candidate interpretations. We refer to the
columns in Tables I and II by prefixing the table number to the column name, e.g.,
the fourth column of Table I will be denoted 12D. The columns in Table III are
computed as follows. Column D2 is 12-212. Column A2 is 12-I2A. Column DA2
is 12=s 2. Column D3 is LI2. Column A3 is 1--I3LA. Column DA3 is

•_.._-._ Table III - Pruning Statistics (Efficiencies
Object D2 A2 DA2 D3 A3 DA3
tr-1 .707 .392 .988 .833 .530 .939
tr-2 .719 .445 .815 .945 .595 .982
tr-3 .724 .321 .816 .881 .501 .978
grip .786 .571 .898 .714 .571 .861

- gator .849 .383 .910 .941 .553 .974

hand .882 .542 .944 .989 .609 .993

Note the surprisingly high efficiency of the distance test.
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Figure 10. Sensors at different heights generate multiple cross sections
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3. Suggestions for EnhancemeIts to the Basic Algorithm

In this section, we consider extensions to the basic algorithm that may improve
its performance as well as extend its range of applicability. The ideas discussed
here are the subject of ongoing research [Gaston 83, Lozano-Prez and Grimson
83].

3.1. Sensors at Different Heights from the Support Plane

The problem statement in section 2 requires that the sensors be at same
height above the support plane, effectively reducing the recognition and localization
problem to two dimensions. The generalization to sensors moving at different
heights above the support plane is straightforward. Each P is constrained to be
on a different cross section of the object parallel to the support plane. These cross
sections are fixed rigidly relative to each other (see Figure 10). Hence, on each level
of the IT the set of edge candidates for pairing with a contact point is drawn from
a different cross section (see Figure 10). Distance pruning is unchanged under these

circumstances, except that only distance along the support plane is considered.
-7 . Angle pruning and model pruning are unchanged.

. .
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Figure 11. Next approach disambiguates among legal configurations
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3.2. Disambiguation

In general, multiple interpretations (several objects and several configurations of
those objects) will be consistent with the distance, angle, and model constraints; we
saw this in the examples in Section 2.3. There are two main sources of ambiguities:
uncertainties in measuring the surface normals and symmetries.

Disambiguating between legal interpretations requires additional data, which
may be obtained by moving the sensors on the object. An alternative to moving
the sensor is the use of four or more sensors, instead of the minimum of three, so as
to reduce the number of ambiguous interpretations. With redundant sensors, the
number of interpretations that will require the model test should also be significantly
fewer.

One possible strategy for obtaining the additional constraints required for
disambiguation is simply to pick a new grip at random and apply the algorithm
again. Only the interpretations compatible with the first grip need be examined; a
new grip is no different from having double the number of sensors to begin with.
This process is repeated until a single configuration of one object is consistent with
the data from all grips.

A second strategy is to rotate the hand slightly while maintaining surface
contact, thereby obtaining position information from nearby points. This method
is most useful when the ambiguity is due to paucity of surface normal information.
It is less likely to be useful in the presence of symmetry.

16
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Figure 12. Strip Trees [ Ballard 811
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A third strategy is to choose a new grip such that the approach directions
of the fingers are guaranteed to disambiguate among the possible objects and
configurations (or provide the maximal information). This can be done by choosing

approach directions for the fingers such that, between them, the fingers cross one
edge for each object or configuration, and furthermore, that the possible crossing
points along each approach path be separated from each other by a perceptible
amount (see Figure 11). Each of the crossing points of the approach directions
and an edge represents the position of the contact point to be expected if that
interpretation holds.

Note that the chosen next approach direction must be guaranteed to reach
the edge, so the direction should be within the intersection of the exact angle
pockets for all the points on all the edges. Because the candidate interpretations
are known, these angle pockets are available as angles relative to the hand frame.
One possible next approach direction found by an implementation of a simple form
of this algorithm is shown in some of the examples in Section 2.3 and labeled "next
approach".

3.3. Using Hierarchical Object Models

For objects with large numbers of edges, n, it may be too expensive to even
consider the n2 2-interpretations in the IT for pruning. The "hand" object in
Section 2.3, for example, had 662 nodes at level 2. In these circumstances, we can
use a hierarchical representation of the object's boundary to limit the combinatorial
explosion. A good choice of representations for the object boundary is the strip
tree representation suggested by [Ballard 81] (see Figure 12). So as to accomodate
angle pruning, each strip must represent a list of the edge normals within the strip,

17
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Figure 13. Distance and angle pruning generalized to strips

umax

and the angle pocket for the strip, which is the union of the angle pockets for the
edges in the strip.

We can now apply the basic algorithm of Section 2 to any level of the strip tree
representation of an object's boundary. In particular, distance and angle pruning
can be simply generalized to strips. Distance pruning is based on the ranges of
distances between strips instead of those between edges. Angle pruning must deal
with unions of angle ranges arising from the individual angles in each strip. These
generalizations are illustrated in Figure 13. Model pruning is postponed until the
most detailed level of the strip tree, corresponding to the original edge list.

Each remaining legal interpretation from one level of the strip tree defines
a limited object model to which the basic algorithm can be applied. In the next
iteration of the algorithm, a P, is limited to pairing with the sub-strips of the strip
paired with that contact point at the current level of the strip tree (see Figure 14).

In the worst case, e.g., when all the interpretations are legal, the strip tree
approach leads to additional work with no savings. We expect that on average it
will produce substantial savings for very large object model.

3.4. Measurement Error

We have assumed, thus far, that the position of the contact points are known
exactly. In practice, the measured position is subject to error from a variety of
sources, including sensor deflection, the sensor's limited spatial resolution, and
errors in the hand's position sensors. The object model also is limited in accuracy.

Distance pruning can be readily extended to deal with errors by using the
* - technique discussed for strip trees. Each edge can be enclosed in a strip that

encloses all possible measured positions of a contact point that could be on the
edge. When an interpretation involving two such strips is pruned, it means that the
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Figure 14. Recursive expansion of the IT with strip trees S S)
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-°.--interpretation is impossible even taking error into account. One can expect that

,. the efficiency of distance pruning will deteriorate as the expected error increases.

)." Model pruning, as described earlier, is impossible in the presence of error.

,'.- In general, the edge equations will be inconsistent with the measured data. The

~approach we are pursuing is to solve numerically for the object's configuration that

.. L

~minimizes the distances of the contact poits from the edges paired with them

.. in the interpretation. If any of the minimal distances exceeds a maximum error

'" bound, the interpretation is invalid. The key problem in implementing this method

* -
is choosing initial values for the configuration parameters of the object given a

~pairing of edges and contact points. Further work is underway in this area.
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4. Summary

This paper has introduced a simple and efficient approach to the recognition
and localization of objects using object models and very local tactile information:
positions of surface points and constraints on surface normals. Using simple pruning
mechanisms, we were able to achieve drastic reductions of the combinatorics in the
recognition process.

The method described here is limited to polyhedral objects having three degrees
of positional freedom relative to the hand. The generalization of the method to
objects with curved surfaces and six degrees of positional freedom is the subject of
ongoing research; the techniques described in this paper appear to generalize fairly
directly.
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